學習宣傳貫徹黨的二十大精神專題 “十四五”規劃專題 保定校區 English

变系数孤子方程的双线性 B?cklund 变换

來源:發布時間:2022-11-18

【講座主題变系数孤子方程的双线性 B?cklund 变换

【講座时间】2022年11月18日  下午:15:00-16:00

【講座地点】保定校區 数理系 腾讯会议:171-980-173

【主講人】吕兴教授 北京交通大学

【主講人簡介

吕兴,教授、博士生导师,美国南佛罗里达大学访问学者,北京市青年教学名师。主要从事孤立子与非线性可积系统的研究,在Phys. Rev. E,J. Phys. A,J. Math. Phys.,Phys. Lett. A,Nonlinear Analysis:Real World Applications,Chaos等国际知名期刊发表论文120余篇,主持或参与国家级、省部级科研项目10项,发表科研论文120余篇,他引3000余次。2019-2021年连续三年入选全球高被引科学家,2020-2021年连续两年入选爱思唯尔中国高被引学者。2019年获教育部高等学校科學研究优秀成果奖(自然科学)一等奖。

【報告內容簡介】

The variable-coefficient two-dimensional Korteweg-de Vries (KdV) model is of considerable significance in describing many physical situations such as in canonical and cylindrical cases, and in the propagation of surface waves in large channels of varying width and depth with nonvanishing vorticity. Under investigation hereby is a generalized variable-coefficient two-dimensional KdV model with various external-force terms. With the extended bilinear method, this model is transformed into a variable-coefficient bilinear form, and then a B?cklund transformation is constructed in bilinear form. Via symbolic computation, the associated inverse scattering scheme is simultaneously derived on the basis of the aforementioned bilinear B?cklund transformation. Certain constraints on coefficient functions are also analyzed and finally some possible cases of the external-force terms are discussed.    


sitemap网站地图